The Design, Use, and Results of Transcutaneous Carbon Dioxide Analysis: Current and Future Directions

Patrick Eberhard, PhD

Transcutaneous carbon dioxide (CO₂) analysis was introduced in the early 1980s using locally heated electrochemical sensors that were applied to the skin surface. This methodology provides a continuous noninvasive estimation of the arterial CO₂ value and can be used for assessing adequacy of ventilation. The technique is now established and used routinely in clinical practice. Transcutaneous partial pressure of CO₂ (tcPco₂) sensors are available as a single Pco₂ sensor, as a combined Pco₂/Po₂ sensor, and more recently, as a combined Pco₂/Spo₂ sensor. CO₂ is still measured potentiometrically by determining the pH of an electrolyte layer. The methodology has been continuously developed during the last 20 yr, making the tcPco₂ systems easier and more reliable for use in clinical practice: smaller sensor size (diameter 15 mm, height 8 mm), less frequent sensor remembraning (every 2 wk) and calibration (twice a day), sensor ready to use when connected to the monitor, lower sensor temperature (42°C or less), shorter arterialization time (3 min), and increased measurement reliability through protection of the membrane. The present tcPco₂ sensors still need to be regularly remembraned and calibrated. One way to overcome these procedures is to use optical-only detection means. Two techniques have been developed using optical absorption in the near-infrared light, in the evanescent wave of a waveguide integrated in the sensor surface, or in a micro-optics sampling cell. Preliminary in vitro and in vivo CO₂ measurements have been performed. The sensor is not affected by drift over several days, and its response time is <1 min.

The measurement of blood gas oxygen and carbon dioxide (CO₂) is an integral aspect of monitoring the respiratory status of a patient. The “gold standard” used to access these parameters is the analysis of arterial blood samples. The fact that arterial blood gas values may change rapidly in many clinical situations has stimulated the interest for a continuous measurement of these parameters. For monitoring the partial pressure of CO₂ (Pco₂), several methods have been described during the last three decades. Continuous intraarterial Pco₂ monitoring has been proposed since the 1970s. In this case, Pco₂ is either measured intraarterially using a miniaturized electrochemical or optical sensor, or fed into a gas chromatographic or a mass spectrometric detection system using a carrier gas or a vacuum (1–5). These techniques are not widely used clinically, mainly because of technical reasons: invasivity, size of the catheter, instability of the calibration due to clotting, or lack of reusability (6,7). It also is relatively expensive. End-tidal CO₂ measurement provides a noninvasive estimate of the arterial Pco₂ (Paco₂). It is routinely used in operating rooms, but it suffers limitations in patients with respiratory disorders and in nonintubated patients. Transcutaneous Pco₂ (tcPco₂) devices provide another option for the continuous noninvasive estimation of Paco₂, and in several situations is preferred to end-tidal CO₂ analysis (8–10). The purpose of this article is to review the current and future directions of tcPco₂ analysis.

A REVIEW

The measurement of Pco₂ on human skin surfaces was first described in 1960 by Severinghaus (11). Using a specially designed temperature-stabilized tissue Pco₂ electrode, he measured Pco₂ values of over 130 mm Hg on slightly blanched skin. Johns et al. (12), who attached an unheated Pco₂ electrode on skin from which part of the stratum corneum was stripped off, reported systematic studies in this direction in 1969. They were able to show that there is a linear relationship between skin surface Pco₂ and Paco₂ in the range from 20 to 74 mm Hg. A few years later, heated Pco₂ sensors were described by Eberhard et al.¹ and by

Huch et al. These sensors measure the oxygen partial pressure at the surface of the skin and gave a close estimate of the arterial \( P_{O_2} \). The use of local heating through the sensor was the breakthrough allowing the continuous measurement of blood gases for prolonged time periods. This method was patented in 1971 (13). The initial goal was the measurement of oxygen in newborns to avoid the deleterious effects of both hypo- and hyperoxygenation (14). Several designs of this type of sensor have been described (15,16), and more than 10 companies have introduced them in the market. The methodology was later applied to the measurement of \( CO_2 \) (17). The first commercially available \( tcP_{CO_2} \) sensors were introduced in 1980, and the combined \( tcP_{O_2}–P_{CO_2} \) sensors in 1985. They have been continuously improved but are still using the same methodology to arterialize the cutaneous tissue. Initially, and correctly, the word “cutaneous” was introduced to describe the technique consisting of analyzing the concentration of the gas diffusing through the cutaneous tissue at the skin surface. “Cutaneous” is still used in the United States standards to describe blood gas measurements by skin surface sensors (18). However, most of the numerous publications describing the application of this technology in clinical routine have been using the word “transcutaneous,” which is now the term most commonly used. European standards also use the word “transcutaneous” (19). The commercially available \( tcP_{CO_2} \) sensors are electrochemical in nature. Other measurement techniques such as mass spectrometry and gas chromatography have also been proposed for the transcutaneous determination of blood gases, but have not been further developed (20,21).

**METHODOLOGY**

Transcutaneous measurement of \( P_{CO_2} \) makes use of the fact that \( CO_2 \) gas diffuses through body tissue and skin and can be detected by a sensor at the skin surface. By warming the sensor, a local hyperemia is induced, which increases the supply of arterial blood to the dermal capillary bed below the sensor. In general, this value correlates well with the corresponding \( P_{A_{CO_2}} \) value. Because of the elevated temperature of the sensor, the \( tcP_{CO_2} \) is higher than the arterial value, and it has become a common practice to apply a correction to the transcutaneous value to provide a reading that corresponds as close as possible to \( P_{A_{CO_2}} \), the gold standard. The shift of \( tcP_{CO_2} \) towards higher values is attributed to two main factors. First, the elevated temperature increases local blood and tissue \( P_{CO_2} \) by approximately 4.5%/°C (anaerobic factor). Second, the living epidermal cells produce \( CO_2 \), which contributes to the capillary \( CO_2 \) level by a constant amount (metabolic constant). The skin metabolism increases the \( tcP_{CO_2} \) by approximately 5 mm Hg. The theoretical basis of the correction algorithm used by the manufacturers of \( tcP_{CO_2} \) systems has been specifically described by Severinghaus (22).

In the case of oxygen determination by skin surface sensor, a sensor temperature of approximately 44°C is needed to obtain a significant correlation with the arterial value. At this temperature, especially in the premature infant, it is necessary to reposition the sensor every few hours. In the case of \( CO_2 \), a lower temperature can be applied, usually 42°C (23–26). Even at a sensor temperature of 37°C, a good correlation with \( P_{ACO_2} \) has been reported (27), but the dynamic behavior of the \( tcP_{CO_2} \) is influenced by the sensor temperature. At a high sensor temperature, the reactivity to fast \( P_{CO_2} \) fluctuations is considerably shortened (28). At a lower temperature, the application of heat creates an initial over-shooting of the \( tcP_{CO_2} \) (29).

In the presently used transcutaneous electrochemical sensors, \( CO_2 \) is measured potentiometrically by determining the pH of an electrolyte layer separated from the skin by a highly permeable membrane, according to the method described by Stow and Randall (30) and Severinghaus and Bradley (31). A change of the pH is proportional to the logarithm of \( P_{CO_2} \) change. The pH is determined by measuring the potential between a miniaturized pH glass electrode and an Ag/AgCl reference electrode (17).

**CURRENT AND FUTURE DIRECTIONS**

\( tcP_{CO_2} \) sensors are available as a single \( P_{CO_2} \) sensor, as a combined \( P_{O_2}/P_{CO_2} \) sensor, mainly used in neonatology and, more recently, as a combined \( Sp_{O_2}/P_{CO_2} \) sensor for use in adults and infants (32) (Figs. 1 and 2).

The typical characteristics of a \( tcP_{CO_2} \) sensor are listed in Table 1.

The sensor must be re-membraned every 1–2 wk, an easy straightforward procedure. The sensor must also be regularly calibrated. This implies that the monitor includes a calibration module and a gas cylinder. The monitor can automatically perform these calibration procedures. The sensor can then always be ready to use, eliminating the waiting time before use.

Today, \( tcP_{CO_2} \) monitors are mainly used to estimate \( P_{ACO_2} \) and/or to follow the trend of \( P_{ACO_2} \) in a patient. It has found an application mostly parallel to the determination of oxygen through \( tcP_{O_2} \) or \( Sp_{O_2} \) in various fields of medicine, such as neonatal intensive care (33), adult critical care (34,35), mechanical ventilation (36,37), anesthesia (38,39), bronchoscopy, sleep

---


studies and apnea testing (40,41), pulmonary stress testing, and respiratory research. It is of particular value in following the immediate effect of any therapeutic measure, which has a direct or indirect influence on the patient’s ventilatory efficiency. When used to estimate \( \text{PaCO}_2 \), the transcutaneous methodology is limited in some clinical situations, e.g., during profound peripheral vasoconstriction and circulatory centralization or in the presence of skin edema.

The most recent developments of tcPco\(_2\) sensors have been oriented towards:

- The combination with other parameters such as \( \text{SpO}_2 \) (32), e.g., in adults to overcome the limitation of tcPco\(_2\) use for measuring the patient’s oxygenation. The integration of \( \text{SpO}_2 \) in a heated sensor may also increase the reliability of the \( \text{SpO}_2 \) measurement in cases of low perfusion and the sensitivity to oxygen saturation change (40,42).

- Use of lower sensor temperature, e.g., 42°C or lower, to avoid the frequent repositioning of the sensor.

- Diminution of the size of the sensor, especially for application with premature infants and on specific peripheral sites such as earlobe, toe, etc. The measurement at the earlobe increases the sensitivity of the tcPco\(_2\) sensor to CO\(_2\) change (42).

- Increasing the sensor’s stability to decrease the need for recalibrating the sensor.

- Increasing the function time between re-membranation.

- Increasing the reliability of the measurement, e.g., by protecting the sensitive sensor surface to avoid any damage of the membrane during the functional period.

- Digitalization of the signal inside the sensor\(^4\).

And, in general, making the use of transcutaneous blood gas monitoring as easy as pulse oximetry.

A limitation of the presently used tcPco\(_2\) methodology is related to the use of the electrochemical measurement technique, more specifically the need to periodically re-membrane and calibrate the sensor. One way to eliminate these procedures may be to apply an optical-only measurement principle as used in pulse oximetry and capnometry. A tcPco\(_2\) sensor using an optical-only detection means was described by Salzmann et al. (43). CO\(_2\) is determined by measuring its optical absorption in the evanescent wave of a waveguide integrated in the surface of the sensor. The surface sensing is combined with modulation spectroscopy providing high selectivity and sensitivity. The use of near-infrared light (1580 nm) allows the use of reliable and cost-effective devices such as standard telecommunication fibers and laser. The high selectivity is obtained by tuning the narrow spectral-width of the laser source on the specific absorption line of the molecule to be detected (Fig. 3). Alternatively, CO\(_2\) has been measured in a micro-optics-type miniaturized sampling cell. The sample volume, adjacent to the skin surface, is reduced to approximately 1 mm\(^3\) allowing a response time of \(<1\) min. The optical sensor can be precalibrated in the factory and is not affected by drift over several days. This technique may offer an alternative to the electrochemical measurement of CO\(_2\) as well as oxygen and other gases. Preliminary measurements performed on an adult volunteer (author) with the so-called “Microcell optical sensor” placed on the forearm and heated at 42°C have shown similar performance as that obtained with a

\(^4\)Hayoz J, Schmid ER, Schmidlin D. Combined pulse oximetry and carbon dioxide tension ear sensor in adult patients early after cardiac surgery. EACTA 2002:34.
commercially available electrochemical transcutaneous sensor (MicroGas 7650, Radiometer-Basel, Switzerland) (Fig. 4).

CONCLUSION
tcPco₂ sensors were introduced for clinical use about 20 yr ago. Initially, they were mainly used in neonatology together with the measurement of tcpo₂ and, more recently, in adult monitoring together with the measurement of spo₂ to further specific applications, e.g., during mechanical ventilation, bronchoscopy, sleep studies, and pulmonary stress testing. The potentiometric CO₂ measurement technology has been continuously improved during the last two decades, making the tcPco₂ systems significantly easier and more reliable for use in clinical practice. It still requires for the regular re-membraning and calibration of the sensor. Preliminary results obtained with an optical-only CO₂ detection in the near-infrared light show that long-term stable and calibration-free CO₂ monitoring is possible. The same optical-only technology may also be applied to the measurement of other blood gas parameters, such as oxygen and anesthetic gases.

REFERENCES
27. Rooth G, Ewald U, Caligara F. Transcutaneous PO2 and PCO2
26. Wimberley PD, Groenlund-Pedersen K, Olsson J, Siggard-
Transcutaneous PO2 and PCO2

11. Severinghaus JW. Methods of measurement of blood and gas
carbon dioxide during anaesthesia. Anesthesiology 1960;21:
717–26
12. Johns RJ, Lindsay WJ, Shepard RH. A system for monitoring
with heating means. US Patent 3,795,239, September 2, 1971
in the newborn. Paediatrician 1976;5:335–69
15. Huch A, Huch R, Lucey JF, eds. Continuous transcutaneous
blood gas monitoring. Birth defects. Vol XV (No. 4). New York:
Alan R. Liss, Inc., 1979
Marcel Dekker, 1983
17. Eberhard P, Schäfer R. A sensor for noninvasive monitoring of
18. ASTM Standards F 984. Standards specification for cutaneous
gas monitoring devices for oxygen and carbon dioxide, 1986
(reapproved 1992)
19. Eur Standard EN 60601-3-1. Essential performance require-
ments for transcutaneous oxygen and carbon dioxide partial
pressure monitoring equipment. December 1996
20. Parker D, Delpy DT, Reynolds EOR. Transcutaneous blood gas
analysis by mass spectrometry and gas chromatography. In:
Continuous transcutaneous blood gas monitoring. Birth defects.
measurements using a mass spectrometer. Acta Anaesth Scand
22. Severinghaus JW. Transcutaneous blood gas analysis. Respir
Care 1982;27:152–59
23. Herrell N, Martin RJ, Pultusker M. Optimal temperature for the
measurement of transcutaneous carbon dioxide tension in the
24. Eberhard P, Mindt W, Schäfer R. Cutaneous blood gas monitor-
25. Vesterager P. Effect of electrode temperature on monitoring of
transcutaneous carbon dioxide (tcPCO2) in preemies. Biotelem
Patient Monit 1982;9:28–35
26. Wimberley PD, Groenlund-Pedersen K, Olsson J, Siggard-

29. Kagawa S, Otani N, Kamide M, Gisiger PA, Eberhard P,
Severinghaus JW. Initial transcutaneous PCO2 overshoot with
ear probe at 42°C. J Clin Monit Comput 2004;18:343–45
30. Stow RW, Randall BF. Electrical measurement of the PCO2 of
31. Severinghaus JW, Bradley AF Jr. Electrodes for blood PO2 and
32. Gisiger PA, Palma JP, Eberhard P. Oxcarbo, a single sensor for
the non-invasive measurement of arterial oxygen saturation and
CO2 partial pressure at the ear lobe. Sens Actuators B Chem
2001;76:327–30
33. Bernet V. New non-invasive technique for continuous monitor-
34. Tatevossian RG, Wo CC, Velmahos GC, Demetriades D,
Shoemaker WC. Transcutaneous oxygen and CO2 as early
warning of tissue hypoxia and hemodynamic shock in critically
35. Bendjelid K, Schütz N, Stolz M, Gérard I, Suter PM, Romand JA.
Transcutaneous PCO2 monitoring in critically ill adults: clinical
36. Berkenbosch JW, Tobias JD. Transcutaneous carbon dioxide
monitoring during high-frequency oscillatory ventilation in
37. Rosner V, Hannhart B, Chabort F, Polu JM. Validity of transcu-
taneous oxygen/carbon dioxide pressure measurement in the
monitoring of mechanical ventilation in stable chronic respira-
38. Rohling R, Biro P. Clinical investigation of a new combined
pulse oximetry and carbon dioxide tension sensor in adult
39. Dullenkopf A, Di Bernardo S, Berger F, Fasnacht M, Gerber AC,
Weiss M. Evaluation of a new combined SpO2/PtcCO2 sensor in
anaesthesized paediatric patients. Paediatr Anaesth 2003;13:
777–84
40. Senn O, Clarenbach F, Kaplan V, Maggiorini M, Bloch KE.
Monitoring carbon dioxide tension and arterial oxygen satur-
ation by a single earlobe sensor in patients with critical illness or
41. Janssens JP, Laszlo A, Uldry Ch, Titelion V, Picaud C, Michel JP.
Non-invasive (transcutaneous) monitoring of PCO2 (tcPCO2) in
42. Eberhard P, Gisiger PA, Gardaz JP, Spahn DR. Combining
transcutaneous blood gas measurement and pulse oximetry.
Anesth Analg 2002;94:76–80
43. Salzmann D, Eberhard P, Depeursinge Ch. Optical transcutane-
blood gas measurement. Chimia 2005;59:261–2