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Effects of Mechanical Insufflation-
Exsufflation on Respiratory Parameters
for Patients With Chronic Airway
Secretion Encumbrance*

João C. Winck, MD, PhD; Miguel R. Gonçalves, PT; Cristina Lourenço, RRT;
Paulo Viana, RRT; João Almeida, MD; and John R. Bach, MD, FCCP

Study objectives: To analyze the physiologic effects and tolerance of mechanical insufflation-
exsufflation (MI-E) for patients with chronic ventilatory failure of various etiologies.
Design: Prospective clinical trial.
Setting: Rehabilitation unit of a university hospital.
Patients or participants: Thirteen patients with amyotrophic lateral sclerosis (ALS), 9 patients
with severe COPD, and 7 patients with other neuromuscular disorders (oNMDs) with chronic
airway secretion encumbrance and decreases in oxyhemoglobin saturation (SpO2).
Interventions: Pressures of MI-E of 15 cm H2O, 30 cm H2O, and 40 cm H2O were cycled to each
patient, with 3 s for insufflation and 4 s for exsufflation. One application was six cycles at each
pressure for a total of three applications.
Measurements and results: We continuously evaluated respiratory inductance plethysmography
(RIP) and SpO2 during every application. Peak cough flow (PCF) and dyspnea (Borg Scale) were
also measured before the first and after the last application. The technique was well tolerated in
all patient groups. Median SpO2 improved significantly (p < 0.005) in all patient groups. Median
PCF improved significantly (p < 0.005) in the ALS and oNMD groups from 170 to 200 L/min and
from 180 to 220 L/min, respectively, and dyspnea improved significantly in the patients with
oNMDs and patients with COPD from 3 to 1 and from 2 to 0.75, respectively. Breathing pattern
characteristics (RIP) did not deteriorate after MI-E in any patient groups. Inspiratory flow
limitation significantly decreased at the highest MI-E pressures for the ALS group.
Conclusions: Our results confirm good tolerance and physiologic improvement in patients with
restrictive disease and in patients with obstructive disease, suggesting that MI-E may be a
potential complement to noninvasive ventilation for a wide variety of patient groups.

(CHEST 2004; 126:774–780)

Key words: amyotrophic lateral sclerosis; COPD; cough flow; mechanical insufflation-exsufflation; neuromuscular
disorders; oxygen saturation; respiratory inductive plethysmography

Abbreviations: ALS � amyotrophic lateral sclerosis; IQR � interquartile range; MI-E � mechanical insufflation-
exsufflation; MIP � maximal inspiratory pressure; NMD � neuromuscular disorder; NPPV � noninvasive positive
pressure ventilation; oNMD � other neuromuscular disorder; PCF � peak cough flow; PEFMF � peak expiratory flow
to mean expiratory flow ratio; PIFMF � peak inspiratory flow to mean inspiratory flow ratio; RIP � respiratory
inductive plethysmography; Spo2 � oxyhemoglobin saturation; V̇e � minute ventilation; Vt � tidal volume

I ndividuals with neuromuscular disorders (NMDs)
such as amyotrophic lateral sclerosis (ALS) and

muscular dystrophy have an impaired cough and a
reduction in peak cough flows (PCFs) as a result of
inspiratory and expiratory muscle weakness.1–3 Bul-
bar dysfunction results in the inability to control the

glottis and maintain upper airway patency, further
decreasing PCFs.1 In pulmonary disorders such as
chronic bronchitis and emphysema, the reduced
expiratory flow resulting from dynamic airway com-
pression and increased viscosity of bronchial secre-
tions is probably the main cause of cough ineffec-
tiveness.2 Excessive secretions have also been
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considered a cause of failure of noninvasive positive
pressure ventilation (NPPV) in acute exacerbations
of COPD.3

Cough flows have value in predicting successful
extubation and mortality rate in patients with neuro-
muscular disorders and COPD.4,5 Cough augmenta-
tion with mechanical insufflation-exsufflation (MI-E)
produces a significant increase in PCF and facilitates
airway secretion clearance in NMDs.6,7 It has been
reported to be successful in avoiding hospitalizations,
pneumonias, episodes of respiratory failure, and
tracheotomy for patients with Duchenne muscular
dystrophy,8 spinal muscular atrophy,9 and ALS.1

With regard to COPD, although earlier publica-
tions10 described some benefit, Sivasothy et al11

reported that MI-E decreased PCF and resulted in
no subjective benefit, suggesting that it may even
exacerbate hyperinflation. However, only low pres-
sures were used in this study, and higher pressures
were used in the more successful studies.7,12 The aim
of the present study was to evaluate the tolerance
and effect of various pressure settings of MI-E on
breathing pattern, PCF, and oxygen saturation for
patients with COPD or NMDs.

Methods and Materials

Patients

Patients with severe COPD or NMDs were referred to our
rehabilitation unit after at least one episode of acute respiratory
failure. All who complained of chronic airway congestion and
difficulty clearing airway secretions, had decreases in baseline
oxyhemoglobin saturation (Spo2), and provided consent satisfied
the criteria for inclusion in this study. Exclusion criteria were
medical instability, any changes in respiratory management dur-
ing the 3 prior months, or need for any antibiotic therapy in the
prior 4 weeks. From October 2002 to January 2003, 9 patients
with severe COPD (COPD group), 13 patients with ALS (ALS

group), and 7 patients with other NMDs (oNMDs) [oNMDs
group] admitted for pulmonary rehabilitation were studied, and
no referred patients were excluded. The diagnosis of COPD was
made according to criteria established by the American Thoracic
Society,13 and NMDs were diagnosed in all patients by a
neurologist who specialized in NMDs. No patients refused to
participate in the study.

Four patients with COPD received long-term oxygen therapy
and continued it during the study; one patient received NPPV,
and three patients received both long-term oxygen therapy and
NPPV. The ALS group included 10 patients with severe bulbar
involvement; 11 patients with ALS received NPPV. The oNMD
group included four patients with myotonic dystrophy, one
patient with Duchenne muscular dystrophy, and two patients
with other muscular dystrophies. Six of the seven patients
received NPPV. Demographic data are shown in Table 1.

Measurements

Static lung volumes were measured by body plethysmographs
(6200 Autobox DL; SensorMedics; Yorba Linda, CA), and dy-
namic lung volumes were measured by mass flow sensors
(Vmax229; SensorMedics) with the patients in the seated position
according to standard procedures.14 The predicted values of
Quanjer15 were used. The inspiratory muscle strength was as-
sessed by measuring maximal inspiratory pressure (MIP) at
functional residual capacity according to the method of Black and
Hyatt.16 The highest of three attempts was recorded.

Spirometry, MIP, maximal expiratory pressure, and resting
awake blood gases from radial artery samples (RapidLab 860;
Ciba-Corning; Sudburry, England) were measured before the
first application in the morning with the patient spontaneously
breathing room air. Dyspnea and PCF were measured before the
first and after the last application. Respiratory inductive plethys-
mography (RIP) was measured during all applications.

MI-E Settings

Mechanical cough assistance was provided by using the Cough-
Assist device (JH Emerson Company; Cambridge, MA). The
pressures are generated by a two-stage centrifugal blower. The
positive and negative pressures may be set for insufflation and
exsufflation, up to a maximum of 60 cm H2O.17 For each patient,
each application was six insufflation-exsufflation cycles at each of
the following pressures: 15 to – 15 cm H2O, 30 to � 30 cm H2O,
and 40 to – 40 cm H2O.

Table 1—Patient Demographics*

Demographics oNMD (n � 7) ALS (n � 13) COPD (n � 9)

Age, yr 29 (26–49) 55 (47–68) 69 (54–73)
Male/female gender, No. 2/5 11/2 8/1
FEV1, L 1.05 (0.61–2) 1.39 (0.89–2.30) 0.92 (0.53–1.28)
FEV1 % predicted 55 (27–62) 54 (27–66) 34 (26–41)
FVC, L 1.26 (0.81–2.29) 1.91 (0.98–2.51) 1.83 (1.5–2.54)
FVC % predicted 55 (27–59) 51 (25–59) 61 (52–67)
FEV1/FVC, % 88 (83–98) 85 (81–90) 48 (38–57)
FEF25–75, L/s 0.96 (0.79–2.00) 1.78 (0.85–2.94) 0.32 (0.19–0.66)
FEF25–75, % 35 (19–64) 47 (25–74) 11 (7–21)
MIP, cm H2O 42.0 (33.6–57.3) 31.0 (22.0–52.0) ND
MEP, cm H2O 41.0 (23.0–59.0) 38.0 (20.0–51.0) ND
Pao2, mm Hg 77.6 (72–96.4) 83.7 (74.3–87.8) 59.9 (55.1–66.1)
Paco2, mm Hg 43.0 (33.6–57.3) 40.4 (36.3–44.6) 50.7 (44.3–59.9)

*Data are expressed as median (IQR), unless otherwise indicated. FEF25–75 � forced expiratory flow at 25 to 75% of FVC; MEP � maximal
expiratory pressure; ND � not done.
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The timing of the cycle was 3-s insufflation, 4-s exsufflation,
and a postexsufflation 4-s pause. There was a 2-min rest period
between each application, during which the RIP measurements
were obtained. During exsufflation, ALS and oNMD patients
were actively told to cough, while patients with COPD were
advised to exhale slowly. After the sixth insufflation to 40 cm H2O
of the last application, the subjects were asked to cough forcefully
on their own, as described by Barach et al.18

Quantitative RIP

RIP was recorded using the SomnoStar PT device (Sensor-
Medics). The input leads for RIP consisted of two cloth belts that
covered curved wires encircling the chest and abdomen. Initial
calibration of the ribcage and abdominal signals were performed
during the first 5 min of operation using a qualitative diagnostic
calibration procedure.19 A software program (RespiEvents ver-
sion 4.2e; SensorMedics) allowed the calculation of breathing
pattern parameters, including tidal volume (Vt), minute ventila-
tion (V̇e), peak inspiratory flow to mean inspiratory flow ratio
(PIFMF), and the peak expiratory flow to mean expiratory flow
ratio (PEFMF). The latter parameters are considered to detect
flow limitation, with values � 1.5 representing normal (rounded)
RIP-derived waveforms. As the flow waveform flattens, indicat-
ing increased resistance, the values approach 1.0. Spo2, also
included in the SomnoStar PT and analyzed by the same
software, was evaluated simultaneously.

For each patient, measurements of Vt, V̇e, PIFMF, PEFMF,
and Spo2 were performed during 2 min in the supine position at
baseline and 1 min after each MI-E application. Median values
for each parameter were analyzed.

PCF were measured before the first application and after the
last application by having the patient cough as forcibly as possible
through a peak flowmeter (Assess; Health Scan Products; Cedar
Grove, NJ). The maximum observed flows in four or five attempts
were recorded.7 For evaluating the effect of treatment on
dyspnea, a Borg scale (0 � not at all breathless; 10 � maximal
breathlessness) was administered before and after the interven-
tion.20

Statistical Analysis

Statistical analysis was carried out using SPSS 10.0 (SPSS;
Chicago, IL). Results are expressed as median and interquartile
range (IQR). Comparisons between patient groups were done
using the Mann-Whitney U test and differences between baseline
and MI-E settings were compared using the Wilcoxon rank test.
A Spearman rank correlation coefficient was used to examine the
relationship between physiologic data; p � 0.05 was considered
significant.

Results

The oNMD patient group was significantly
younger than the ALS and COPD groups (p � 0.024
and p � 0.004, respectively) [Table 1]. Pao2 was
significantly lower in the COPD group compared to
the oNMD and ALS groups (p � 0.016 and
p � 0.001, respectively). Paco2 values were signifi-
cantly higher and the FEV1 significantly lower in the
COPD group compared to the ALS group
(p � 0.003 and p � 0.0023, respectively). PCF at
baseline was not significantly different between pa-

tient groups. In the ALS group, there was a signifi-
cant positive correlation between PCF (at baseline
and after MI-E) and MIP (r � 0.637, p � 0.035, and
r � 0.778, p � 0.005, respectively), and a negative
correlation between baseline Vt and Paco2
(r � � 0.852, p � 0.0015).

There were no significant differences between
groups in Vt, V̇e, PIFMF, PEFMF, and Spo2 at
baseline. In patients with NMD, only PCF improved
significantly after MI-E (180 L/min vs 220 L/min); in
patients with COPD, Spo2 improved significantly
only after 40 to � 40 cm H2O of MI-E (92% vs
97%). In patients with ALS, both PCF and Spo2
improved significantly after 40 to � 40 cm H2O.
Moreover, in this group PIFMF increased signifi-
cantly between 15 to � 15 cm H2O, 30 to � 30 cm
H2O, and 40 to – 40 cm H2O (1.38 vs 1.45 and 1.38
vs 1.44). Although there was no significant difference
for the rest of breathing pattern parameters during
different settings for each patient group, after MI-E
at 30 to � 30 cm H2O, PIFMF was significantly
lower in patients with COPD, compared to ALS
(1.36 vs 1.44, p � 0.046).

Dyspnea (Borg scale) improved significantly after
40 to � 40 cm H2O of MI-E in patients with COPD
and patients with NMDs. Pulmonary parameters as a
function of MI-E settings and significant compari-
sons are reported in Table 2.

In patients with COPD, we did not find any
significant correlation between severity of obstruc-
tion (FEV1) and impairment of breathing pattern
during MI-E (measured by Vt, V̇e, PIFMF, and
PEFMF). In patients with ALS, we did find a
positive correlation between FVC and MIP with
PCF after MI-E (r � 0.720, p � 0.008, and
r � 0.778, p � 0.005, respectively). The effects of
MI-E on the RIP measurements of Vt, V̇e, and Spo2
are shown in Figure 1. No patients complained of
abdominal distension or vomiting, blood-streaked
sputum, chest pain, discomfort, nor had any other
symptoms or signs suggestive of barotrauma at any
time during or following the study.

Discussion

MI-E was well tolerated, and it significantly im-
proved PCF and Spo2 for patients with NMD and
COPD with airway secretion encumbrance, espe-
cially when used at pressures of 40 to – 40 cm H2O.
It has been demonstrated in Rhesus monkeys that
these pressures result in the greatest expiratory flows
and result in no airway damage.21 While some
patients find MI-E to be most effective at pressures
of � 60 cm H2O, the great majority of patients in
clinical practice receive it at 40 to – 40 cm H2O.
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Thus, these are the widely preferred pressures in
clinical practice for both comfort and effectiveness in
many hundreds of patients and thousands of appli-
cations in patients with neuromuscular weakness
over the last 50 years.22 Likewise, Barach and Beck23

wrote that the pulmonary pressure changes gener-
ated by MI-E are a small fraction of those generated
by respiratory muscle contractions during a normal
cough. Thus, it is not surprising that there was no
apparent barotrauma nor other respiratory compli-
cations in this study.

Breathing pattern characteristics did not deterio-
rate after MI-E. This is consistent with studies that
reported significant increases in vital capacity and
Spo2 when using MI-E to clear airway secre-
tions.6,7,10 In a study6 including patients with NMD,
FEV1 following MI-E only increased, demonstrating
no persistent airway collapse or air-trapping. The
present study demonstrated that the same could be

true for MI-E used in COPD when evaluating
breathing parameters by RIP.

The increase in Spo2 with MI-E was not associ-
ated with other changes in RIP parameters. It is
possible that the benefit of the technique, improving
the recruitment of nonventilated pulmonary zones,
and removing mucous debris, attains a more evident
improvement in gas exchange rather than in breath-
ing pattern. However, to answer this question it
would have been necessary to examine the effects of
MI-E on ventilation perfusion ratio distribution and
oxygen and carbon dioxide exchange, which was
beyond the aim of our study.

RIP is the most widely accepted method for
quantitative and qualitative noninvasive respiratory
measurements, and has been demonstrated to accu-
rately measure Vt,24,25 and detect inspiratory and
expiratory flow limitation or collapse.26,27 The former
occurs because of the narrowing or collapse of the

Table 2—Pulmonary Parameters and Dyspnea Scores as a Function of MI-E Applications*

Variables NMD (n � 7) ALS (n � 13) COPD (n � 9)

Baseline
PCF, L/min 180 (150–275) 170 (128–300) 250 (173–288)
Spo2, % 94 (92–96) 94 (94–95) 92 (91–94)
Dyspnea (Borg) 2.0 (0.4–3.3) 2.0 (0.8–3.5) 3.0 (2.0–4.0)
Vt, mL 468 (390–808) 408 (338–604) 366 (340–484)
V̇e, L/min 12.7 (6.4–20.5) 8.5 (6.6–11.5) 8.0 (6.6–11.1)
PIFMF 1.45 (1.39–1.59) 1.38 (1.35–1.43) 1.36 (1.34–1.46)
PEFMF 1.55 (1.50–1.78) 1.54 (1.42–1.60) 1.58 (1.44–1.67)

After MI-E 15 cm H2O
PCF, L/min ND ND ND
Spo2, % 96 (92–98) 95 (93–97) 95 (92–95)
Dyspnea (Borg) ND ND ND
Vt, mL 460 (416–708) 390 (341–454) 428 (358–506)
V̇e, L/min 11.4 (6.4–13.7) 8.9 (7.0–11.1) 8.4 (5.9–11.2)
PIFMF 1.47 (1.42–1.48) 1.45 (1.34–1.54)† 1.37 (1.32–1.48)
PEFMF 1.54 (1.48–1.63) 1.51 (1.41–1.57) 1.64 (1.39–1.77)

After MI-E 30 cm H2O
PCF, L/min ND ND ND
Spo2, % 95 (93.5–97.0) 95.0 (94.0–97.0) 95.0 (91.5–95.0)
Dyspnea (Borg) ND ND ND
Vt, mL 440 (416–664) 408 (348–467) 404 (328–488)
V̇e, L/min 10.4 (8.2–16.5) 9.8 (7.7–10.4) 8.2 (6.2–10.6)
PIFMF 1.43 (1.40–1.56) 1.44 (1.38–1.50)†� 1.36 (1.30–1.43)�
PEFMF 1.55 (1.43–1.71) 1.54 (1.50–1.56) 1.50 (1.44–1.73)

After MI-E 40 cm H2O
PCF, L/min 220 (190–300)† 200 (170–352)‡ 275 (195–315)
Spo2, % 98 (97–98)‡ 98 (97–98)‡ 97 (95–97)§
Dyspnea (Borg) 0.75 (0–2.3)† 1.0 (0.5–2.0) 1.0 (1.0–2.5)§
Vt, mL 588 (446–764) 494 (389–576) 440 (346–558)
V̇e, L/min 11.4 (9.5–14.7) 10.6 (8.6–17.8) 9.5 (5.3–10.2)
PIFMF 1.40 (1.39–1.54) 1.43 (1.37–1.52) 1.36 (1.33–1.45)
PEFMF 1.52 (1.47–1.67) 1.54 (1.51–1.56) 1.60 (1.42–1.76)

*Data are expressed as median (IQR). See Table 1 for expansion of abbreviation.
†p � 0.05 compared to baseline.
‡p � 0.005 compared to baseline.
§p � 0.02 compared to baseline.
�p � 0.05, ALS vs COPD.
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upper airway in response to the negative intratho-
racic pressure during inspiration. Clinically this is
seen in patients with sleep-disordered breathing,28

and during negative-pressure ventilatory support.29

Application of negative pressure (� 5 cm H2O) at
the mouth during resting tidal respiration has been
shown to enhance detection of expiratory flow limi-
tation.30

In our study, we used RIP to evaluate the effect of
MI-E. In the oNMD group, we did not find any
deterioration in breathing pattern or pulmonary
parameters. In the ALS group, PIFMF even signif-
icantly increased with pressures at 40 to � 40 cm
H2O, suggesting decreased pharyngeal resistance.27

In the COPD group, the shape of flow volume
waveforms were also little affected by MI-E, and
median PEFMF remained constant over all the
MI-E applications (Table 2). Therefore, concerns by

Sivasothy et al11 that MI-E may exacerbate hyperin-
flation do not appear to be justified with these
measurements. However, evaluation of lung volumes
should be considered for more accurate conclusions.

In patients with ALS, the majority with bulbar
involvement and receiving domiciliary NPPV, a sig-
nificant improvement in PCF and progressive in-
crease of Spo2 with increasing MI-E pressures was
demonstrated. No subjects complained of discomfort
during MI-E, and the patients with COPD actually
reported relief of dyspnea (Borg scale). This is
consistent with other published experiences in
� 2,000 applications of MI-E, the majority of which
were in patients with intrinsic lung disease.10

Although we cannot exclude a placebo effect, the
significant improvement in Spo2 at the end of the
last application suggested that they indeed benefited.
In fact, contrary to the findings of Sivasothy el al,11

Figure 1. RIP measurements of Vt, and Spo2 in a patient with ALS during MI-E (AC � rib cage
signals, AB � abdominal signals). Top: RIP signals show significant Vt and respiratory rate increase as
well as rise of Spo2 during different settings of MI-E (arrows). Bottom: Using breath-by-breath analysis
of PIFMF and PEFMF during baseline (left) and after MI-E at 40 to – 40 cm H2O (right), it was
possible to evaluate effects on airflow limitation.
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we did not find deterioration of PCF with MI-E. The
differences found might be attributed to the tech-
nique of PCF measurements (pneumotachograph in
the study by Sivasothy et al,11 and a standard peak
flowmeter in our study), coughs performed without
the exsufflation, and the significantly higher MI-E
pressures used in our study. The use of lower
pressures may be ineffective, as is suggested by the
improvement in Spo2 in patients with COPD (as
well as in other patient groups) being reached only at
the highest pressure application. In fact, Gomez-
Merino et al,31 using MI-E connected to a lung
model, found that insufflation and exsufflation pres-
sures of 35 to � 35 cm H2O or 40 to � 40 cm H2O
were the most effective in achieving higher values of
PCF, and these pressures are also those suggested by
the manufacturer.17 These authors31 observed that
because the minimally clinically effective cough
flow of 2.7 L/s was not achieved at insufflation-
exsufflation spans of � 30 cm H2O, settings below 30
to � 30 cm H2O should not be expected to be
effective. Moreover, this technique can be applied in
a more aggressive protocol, for longer periods of
time to obtain adequate PCFs to prevent mucus
plugging and profuse airway secretions, especially
during respiratory tract infections and acute respira-
tory failure.32,33

Conclusion

This prospective study confirms that MI-E can
improve PCF and oxygenation in ALS and other
NMDs. In patients with COPD, it improved oxygen-
ation and breathlessness without a significant im-
provement in PCF, but also without any deteriora-
tion in breathing pattern or pulmonary parameters.
Taken together, these findings suggest that MI-E
may be a potential complement to noninvasive ven-
tilation for a wide variety of patient groups, and may
help to reduce the frequency of pulmonary compli-
cations caused by retention of secretions.

The results of this study may indicate the use of
MI-E for secretion management during ventilator
weaning5 and possibly for COPD exacerbations with
excessive secretions.34 Further validation is war-
ranted in a larger patient population.
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